Trial #	4	
Location	Wanganui	
Province	Wanganui	
Farm Type	Beef and Sheep	
Product Trial	FPF v/s Granular	
Date	1994 - 1995	

Introduction: Dry matter and soil nutrient responses to different fertiliser treatments on a dry stock farm were compared for 18months. <u>Fertiliser was applied on 29 March 1994</u>. <u>Additional fertiliser was applied a year later on 20 March 1995</u>. Plots (4m x 4m) were chosen at three sites each with different fertility levels and aspects. "Airstrip" was an exposed site at 600m (2000ft)."Middle Run" was also exposed at 450m (1500ft). "Middle" was a sheltered fattening area at 300m (1000ft).

Treatments:

3. DAP

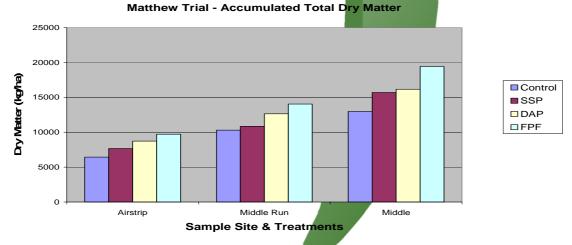
4. FPF

Applied 29/3/94

150kg/ha of DAP blend

Applied 20/3/95

- Control Nil
 SSP
- 110kg/ha DAP 13S


75kg/ha

2.5kg/ha trace elements (TE) 500kg/ha Super + 2.5kg/ha TE d 250kg/ha of DAP blend 75kg/ha

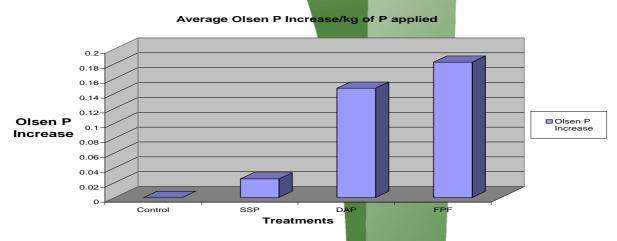
- DAP blend Granular DAP 65%, Elemental Sulphur 15%, Limeflour 20% (Trace elements were applied at 1.5kg/ha in 1994 & 2.5kg/ha in 1995)
- FPF same as DAP blend but in FPF form applied at 75kg/ha + TE

Results:

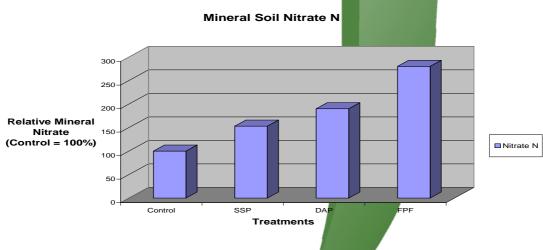
Total Accumulated Dry Matter (kg/ha)			
Treatment	Airstrip	Middle Run	Middle
Control	6442	10304	12979
SSP	7661	10829	15702
DAP	8739	12641	16171
FPF	9719	14052	19430

As would be expected when fertility and aspect differences were so great, there were marked differences between the dry matter grown at each site. However, at the same site, there was a consistent pattern with the FPF treatment outperforming the others.

Soil Analyses


Various tests were performed, some of which are summarised here.

<u>Olsen P</u> The DAP treatment was the most effective at raising Olsen P levels followed by the FPF treatment. This suggests that the extra dry matter grown by the FPF treatments at each sample site is not directly correlated to the available P levels in the soil.


The amount of P applied/treatment varied significantly i.e.

Control Nil		
SSP	63kg/ha	
DAP	52kg/ha	
FPF	15.6kg/ha	

It is interesting to calculate the increases in Olsen P measured as a function of the amount of P applied.

Trials by AgResearch indicate there is no difference between SSP & DAP in relation to increases in Olsen P levels. These results contradict that conclusion, unless the differences are explained by the Limeflour and Trace Elements in the FPF mix.

The relative increases in soil **sulphate** and **trace element** levels of boron, copper and zinc showed similar trends as those displayed for the relative soil nitrate.